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Turbulent cascade in vortex dynamics of magnetized pure electron plasmas
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Elementary processes in free-decaying two-dimensional (2D) turbulence are examined by extensive analyses
of fine structures in the density distribution of a magnetized pure electron plasma that is linearly unstable with
the initial ring-shaped profile, deforms nonlinearly into patches of vortices, and relaxes into a single-peaked
stable distribution via successive mergers among the patches. The stochastic dynamics of the decreasing
number of vortices in the real space correspond to the time evolution of energy spectra E(k) in the wave
number (k) space that the energy transfers down to lower k while the upward-spreading tails of the spectra fit
to the power-law (ock~%) with > 3. The transfer rates, £(k) and 7(k) in energy and enstrophy spaces, evaluated
from the time-resolved k-spectra demonstrate characteristic features of the 2D turbulence, i.e., (k) is negative
and deepest below the k;,; corresponding to the size of the first-generated patches, and 7(k) increases from zero
to a constant value at k> k;,;. By averaging the time-dependent spectra of E(k), £(k), and 7(k), constructions
are carried out for the spectra in a stationary turbulence that is sustained by the continuous generation of
vortices due to the instability and dissipation at high k. The spectra are qualitatively consistent with the 2D
turbulence theory with discrepancies including that a=4.4 and that the enstrophy transfer rate is almost zero
around k=kj,; reflecting the contribution from the coherent vortices.
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I. INTRODUCTION

Macroscopic dynamics of pure electron plasmas trans-
verse to a strong magnetic field are equivalent to the two-
dimensional (2D) Euler fluid within the guiding-center ap-
proximation, and the electron density n(x,y) and the
potential distribution ¢(x,y) are interpreted as the vorticity
{(x,y) and the stream function ¢(x,y), respectively [1]. Tak-
ing advantage of this equivalence, magnetized pure electron
plasmas have been employed extensively for detailed exami-
nations of many aspects of 2D vortical dynamics that consti-
tute the elementary processes of 2D turbulence, such as the
advection, merger, filamentation of vortex patches [1-3], and
the formation of quasisteady states with ordered structures
[4,5] in the course of the relaxation from nonequilibrium
initial states.

Vortex patches are spontaneously generated in the nonlin-
ear stage of the diocotron instability of the ring-shaped elec-
tron density distribution with a strong radial shear of the
azimuthal flow [6,7]. Free relaxations of the unstable system
include stochastic dynamics of vortex patches. Time-
resolved spectral analyses have been carried out along the
relaxation of the turbulent states, focusing on the particle
transport [8]. In this paper, we extend these examinations
further to explore fundamental properties of 2D turbulence
of the vorticity distribution in terms of the transport of the
energy and enstrophy in the wave-number (k) space.

Theoretical examinations of 2D turbulence have been car-
ried out by Kraichnan [9] for the forced turbulence and in-
dependently by Batchelor [10] for the free-decaying turbu-
lence. According to these studies it is expected that in the
isotropic and homogeneous 2D turbulence, the enstrophy in-
jected at the length-scale of [, («<1/kjy;) cascades at a con-
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stant transfer-rate of z down to a scale of dissipation I,
(cc1/k,) and dissipates at smaller scales by viscosity. This
cascade picture of 2D turbulence leads to an energy spectrum
characterized by the power-law E(k)<k™ in the inertial
range of ki, =k=k, in the wave-number space.

The cascade process of the enstrophy has been investi-
gated experimentally by using thin layers of electrolytes
[11,12] and soap films [13], and k=3 scaling has been ob-
served. However, in the electrolytic layer experiments, the
coarse-graining of the flow distribution to compute the ve-
locity field and numerical noises associated with the differ-
entiation of the velocity field to determine the vorticity dis-
tribution make it difficult to ensure a high signal-to-noise
(S/N) ratio enough to resolve the dissipative processes both
in space and in amplitude. And in the soap film experiments,
the reliance on the frozen-turbulence hypothesis for convert-
ing the data from a time series to spatial distribution makes it
difficult to independently analyze the spatial and temporal
structures of the flows. For these reasons, there remains some
uncertainties in comparing the vortex dynamics observed in
the real space in these experiments with the theoretical pic-
ture of 2D turbulence described in the spectral space.

In the experimental investigation with pure electron plas-
mas, the vorticity distribution can be determined directly in
terms of the electron density distribution n(x,y) down to
small length scales comparable to the electron gyro-radii
where the guiding center approximation breaks down. In ad-
dition, because the velocity field v(x,y) is determined by the
integration of n(x,y), the relevant physical quantities are less
vulnerable to numerical noises. With these advantages, in
this paper, we observe and analyze the cascade process of the
free-decaying 2D turbulence in wide length scales extending
from the injection scale to the dissipative scale. Moreover, by
considering this phenomena as an elementary process of
forced 2D turbulence, we derive the spectrum in the station-
ary state through time-averaging the evolution of spectra and
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compare with the Kraichnan-Batchelor theory.

II. EXPERIMENTAL METHOD

The experiment is carried out using a pure electron
plasma trapped in a Malmberg-trap with a uniform magnetic
field (B;=0.048 T) and a square-well potential, which is in
the same configuration as previously reported [3,8,14]. A set
of cathodes selected from a cathode array are activated for
pulsed injection of electrons into the trap. After the repetitive
operation of injection-trapping cycles followed by the relax-
ation period of many strings of electrons, the distribution of
trapped electrons relaxes to a bell-shaped profile that is axi-
ally homogeneous over the trap length of L~ 80 mm. The
typical height of the relaxed density and its radial width are
n=13x10" m and r,~10 mm, respectively. Since the
self-field potential is the deepest around the axis, a slight
reduction of the external potential barrier at the injection side
lets these electrons escape selectively toward the cathode ar-
ray. Various profiles of the ring distribution are generated by
combining the depth of the escaping potential, the duration
of the gating and the profile of the bell-shaped distribution.
The fastest-growing mode of the diocotron instability criti-
cally depends on the aspect-ratio (radius/thickness) of the
ring distribution. The number of the first-generated vortex
patches is higher for larger aspect-ratios [7,15]. Therefore the
enstrophy injection scale is controllable by varying the shape
of ring profiles as the initial condition of the unstable system.

The collective dynamics proceed while the electrons are
held in the trap. After a prescribed time of isolation in the
trap, the electrons are dumped onto the conducting phosphor
screen biased at 7.5 kV for the acceleration. The luminosity
distributions are recorded using a charge-coupled-device
(CCD) camera with 512 X 512 pixels and a dynamic range of
16 bits. This conducting screen also serves as an electron
collector for the absolute determination of the total number
of trapped electrons Ny. A linear relationship between the
integrated luminosity N; and N, has been confirmed [14,16].
Therefore, the density distribution n(x,y) is absolutely mea-
surable. Using the equivalence to the 2D Euler fluids, the
measured density distribution n(x,y) is related to the vortic-
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FIG. 1. An example of a measured 2D density distribution
n(x,y) (left) and a 1D profile along the chord y=0 (right). The
positions labeled by the letters A to E on the n(x,y) correspond to
those of a cross-section profile.

ity distribution as {=en/eyB, and the potential distribution
¢(x,y) obtained by solving the Poisson equation in combi-
nation with n(x,y) is related to the stream function as ¢
= ¢/ B,,, where —e is the electron charge and g is the dielec-
tric constant in vacuum. In this experimental configuration,
the spatial resolution is 0.1 mm/pix which is enough to re-
solve the dissipative scale /;,~0.32 mm as evaluated later.
An example of the measured density distribution n(x,y) and
its profile along the chord y=0 are plotted in Fig. 1 to indi-
cate that fine filamentary structures are clearly discernible.

The time evolution of the density distributions is observed
by repeating the above procedure with varied times of the
holding. Because the relaxation process of the turbulence
triggered by the instability is stochastic in nature, a high
reproducibility of the initial profiles is required for the de-
structive diagnostics. Therefore in this experiment, in addi-
tion to technically minimizing shot-by-shot variations in the
initial profiles, an ensemble average is applied over typically
5 shots of data for each time of the observation in examining
the time evolution of physical quantities characterizing the
turbulence.

II1. RESULTS AND ANALYSES

A. Vortex dynamics in 2D turbulence

The time evolution of the observed density distribution
taken from one of the data sets is shown in Fig. 2. The ring
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FIG. 2. Images of the time evolution of the density distribution. The darkness is proportional to the density. The time of observation (in

us) is indicated at the upper left corner.
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FIG. 3. The time evolution of energy E (open circles), total
electron number N (open diamonds), angular momentum L (open
triangles), enstrophy Z, (solid squares), and palinstrophy P (solid
downward triangles).

profile is produced at 5 us, and distorted by the diocotron
instability within a few us. The deformed distribution grows
on the fastest growing diocotron mode and eventually 5
high-density vortex patches are generated at 13 us. After the
formation of the first vortex patches, the number of patches
decreases successively through intermittent mergers among
the patches. This stochastic process is accompanied by the
generation of filamentary structures in the low density part of
the population that extend the length scales to finer regions.
The outward transport of the filamentary structures is accom-
panied by the inward transport of the high-density patches as
observed at 31 us. The concentrated patches rotating with
the period of 10 us expel filaments from the central region,
and finally form a bell-shaped core distribution that is sur-
rounded by a low density halo with striations (=200 us).

Turbulent states are characterized by areal integrals of the
vorticity [«n(x,y)]. Figure 3 plots some of the low-order
integrals calculated from the measured density distribution
n(r, ) as a function of time. Each integral is normalized to
unity. The integrals include the electrostatic energy (fluid ki-
netic energy) E=1/2 [ d’r n(—ed), the total electron number
(total circulation) N=[d’r n, the angular momentum (angu-
lar impulse) L= [d’r nr?, the enstrophy Z,=1/2 [ d*r n?, and
the palinstrophy P=1/2 [d?r|Vn|?. Figure 4 shows the dis-
tribution of integrands in Z, [n(x,y)?] and P [|Vn(x,y)[*] at
31 us in Fig. 2. The observation indicates that the enstrophy
is concentrated at the high-density vortex patch and the pa-
linstrophy is a measure of the fine-scale structures in the
turbulence [10,11,17].

n(x,y)> tVn(x, y)fz_b

FIG. 4. The distribution of the integrand in Z,: n(x,y)? (left) and
in P: |[Va(x,y)|* (right) at 31 us in Fig. 2.
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Throughout the whole process, E, N, and L do not show
any systematic change except 5% variations probably attrib-
utable to the shot-by-shot fluctuations in the generation pro-
cess of the unstable initial distributions. Therefore, the three
integrals may be considered to be invariant. In contrast, Z,
and P show unambiguous systematic changes. The enstrophy
Z, undergoes a substantial decaying through the merging
processes, and finally goes down to 40% of the initial value.
The palinstrophy P shows a rapid increase while mergers
among the vortex patches are active. It is maximized at
31 us when the filamentary structures are conspicuous in the
region outside the high-density core as shown in Fig. 2. After
the maximization, P drops steeply concomitantly with the
reduction of the decreasing rate of the enstrophy, suggesting
the manifestation of dissipative effects in finer length scales.

In order to estimate the degree of enstrophy dissipation in
this experiment, we introduce a Newtonian viscosity into the
2D Euler equation as a correction. Because {=en/gB,), the
Navier-Stokes equation is written as Dn/Dt=vV’n (where v
is the kinematic viscosity). Multiplying n to the equation and
integrating it over the cross section under the boundary con-
dition that n|,=RW=O (where Ry, is the wall radius of 32 mm),
the decreasing rate of the enstrophy is related to the viscosity
and the palinstrophy as follows [10,11,17]:

D 2vP. (1)
By introducing the experimental values of Z, and P in the
interval from 13 to 31 us into Eq. (1), the effective viscosity
v is evaluated as 0.004+0.002 m? s~
The collisional transport of a magnetized pure electron
plasma in the 2D regime has been studied analytically and
experimentally [18]. In these studies, the viscosity coefficient
is predicted theoretically as Eq. (62) in Ref. [19], and em-
pirically from the experimental data as Eq. (12) in Ref. [20].
By introducing the parameters of the present experiment to
the proposed formula, we estimate the viscosity coefficient
as  0.004+0.003 m*>s™! from Eq. (62) and as
0.0005+0.0003 m? s~! from Eq. (12). The former appears to
be quantitatively consistent with the experimental evaluation
based on Eq. (1). Though the present study is not under
stationary states as assumed in the predictions, the agreement
may suggest that the contribution of stochastic dynamics of
individual particles under fluctuating fields is significant in
the dissipation process of vortex dynamics in fine scales.

B. Spectral dynamics in 2D turbulence

To compare the experimental results to the theoretical pic-
ture of 2D turbulence, we calculate the energy spectrum in k
space from the measured density distribution. The energy
spectrum E(k) is determined from the Fourier transform of
the density distribution n(k)=fd’r e *n(r) as

2 (2w 2
-l [

2 Eoby 0 k2

where ¢ is the azimuthal angle of k. The time evolution of
E(k) thus obtained is shown in Fig. 5. In the initial distribu-
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FIG. 5. The time evolution of the energy spectrum calculated from the measured n(r). Numbers at the upper-left corner stand for the time

of the observation.

tion at 5 us, the energy spectrum shows oscillatory struc-
tures due to the concentration of the energy in the ring at the
radius of r,,. When the ring distribution is torn into the vortex
patches at 13 us, the spectrum has a local maximum around
the wave number k=k;,; = 500 consistent with the size of the
first vortex patches. Along with the subsequent mergers be-
tween patches (r=13-31 us), the location of the spectral
maximum shifts progressively down to lower wave numbers,
and the dip around k=k_,.=~300 which corresponds to the
core size in the final state is filled. In length scales smaller
than the width of the vortex patches, the energy spectrum
broadens upward and the E(k) exhibits a power dependence
of xk™®. The slope of the spectrum in the interval 700=k
=5000 is drawn in Fig. 5.

Throughout the merging processes, the power index «
remains around 5, apparently larger than the theoretically
predicted value of 3 [10]. In the slow relaxation process to-
ward the asymptotic state after the merger (r=40-200 us),
the energy concentrates at k... and decreases steeply beyond
k=1000. The power index in the high wave-number region
1000 =k=5000 decreases slowly from =5 toward 3.5. The
power-dependent spectrum at high k represents fine struc-
tures remaining in the halo region surrounding the high den-
sity core.

The rate of upward energy transfer e(k) through k is
evaluated from the time-resolved energy spectrum in Fig. 5
as

k
e(k)=— f dkﬂk), (3)

min

where the lower integration limit k,,;, corresponds to the wall
diameter. The enstrophy transfer rate 7(k) is evaluated simi-

weg(k) 2x108 m2s3)  —p(k) (1014 5°3)

larly from the enstrophy spectrum Z(k)=k?E(k). The time
evolution of (k) and 7(k) during the period in which E(k)
follows the power law is shown in Fig. 6. The observation of
e(k) indicates that the energy is transferred downward and
the rate of transfers is maximum around k. at each time. In
contrast, the enstrophy is transferred upward in the wave-
number space with k=k;,;. Both in the energy and in the
enstrophy, the transfer rates are maximized at =25 us when
the density configuration changes drastically by vortex
merger from separated vortex patches to a single-peak distri-
bution.

The experimental data indicate that, throughout the whole
process, n(k) is almost constant over the wide region of k
=1500 as assumed in the theoretical picture of 2D turbu-
lence. The rate is estimated at 7=~ (0.52—2.3) X 10'* s73 in
Fig. 6. By combining the 7 and the effective viscosity v
estimated in the previous subsection, the dissipative scale I,
is estimated to be 0.32+0.07 mm according to the expression

ld ~ 7]—1/61/1/2 (4)

proposed in Ref. [10]. This length is consistent with the
thickness of the filamentary structure at the end of spiral
arms displayed at the position D in Fig. 1. The observation
that 7(k) decreases to zero at k <2k;,; from a constant value
at k> 3k;,; corresponds to the observed vortex dynamics in
Fig. 2 showing that the change of the structure size is limited
to the tenuous region outside the high-vorticity patches. The
constraint of the enstrophy cascade by the vortex patches is
considered as a reason why the slope of the observed energy
spectrum is steeper than the theoretical prediction [21,22].

2H7us F23 F25 /27 F31
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FIG. 6. The time evolution of the upward transfer rates of the energy e(k) (dashed line) and enstrophy 7(k) (solid line) through .
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FIG. 7. The energy spectrum E(k) time-averaged in the interval
t=13-200 us. Inset shows the time-averaged transfer rates of the
energy £(k) (dashed line) and enstrophy 7(k) (solid line).

C. Spectra in stationary turbulence

The time-resolved data presented above include details of
free-decaying 2D turbulence whose enstrophy is fed at k
=kip; corresponding to the first generation of vortex patches
and that is left in an isolated state. Here we try to construct
the energy spectrum in a stationary state that is maintained
by continuous energy input at k=k;,; due to the instability
and by the continuous dissipation at k>>kj, by using the
above data as an elementary process constituting a stationary
turbulence. If the interaction among the structures appearing
in different stages of the free-decaying turbulence is negli-
gible, the time-averaged spectra, E(k), &(k), and 7(k), may
approximately represent the characteristic features of the sta-
tionary turbulence. The results of the time-weighted average
of the observed data are summarized in Fig. 7.

The constructed spectra exhibit characteristics close to the
fundamental features of stationary 2D turbulence: The en-
strophy is transferred upward at a constant rate above k
~1500=3k;y; corresponding to one-third of the scale of first
vortex patches. With this transfer rate, the dissipative wave
number is estimated at k;~ 7200 from Eq. (4). Figure 7 also

shows that E(k) depends algebraically on k in a wide range
of the wave-number space k;,; =k =k,. In contrast to 7(k), it
is confirmed that in the region k <3k;,;, the energy flux &(k)
proceeds toward small wave numbers and is maximized
around k. corresponding to the size of the core distribution
in the asymptotic state.

Through the region k= 3k;,;, where the enstrophy transfer
rate is constant, the energy transfer rate is observed to be
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zero. This observation supports the theoretical expectations
that the spectral dynamics at high wave numbers of the 2D
turbulence are governed by the enstrophy cascade process
[9]. On the other hand, in the region k <ki,;, the observation
that 7(k) ~0 and &(k) <O indicates that the dynamics in the
energy spectra obey the inverse cascade process. The ob-
served nonuniformity of &(k) is understood in terms of the
absence of a dissipation mechanism at large length scales in
the strongly magnetized pure electron plasma.

In the intermediate region k;, =k <3k;,;, neither &(k) nor
77(k) is zero, indicating that the transfer exists in the k space
of both the energy and enstrophy. The local nonuniformity of
g(k) and 7(k) in this region suggests the breakdown of the
ubigitous cascade model. This observation is closely related
to the persisting presence of coherent vortices that capture a
large amount of enstrophy as shown in Fig. 4 and inhibit the
cascade as observed by numerical simulations [21,22]. This
is probably the reason why the power index of the observed

energy spectrum E(k) in the inertial range of k;, i =k=kgis
a=4.4 and larger than the theoretical prediction of a=3 [9].

IV. CONCLUSION

In this paper, we have examined the vortex dynamics of
2D turbulence in a magnetized pure electron plasma over a
wide range of length scales extending from the injection
scale down to the dissipative scale, and compared the experi-
mental results to existing theories of 2D turbulence. In the
stage characterized by the successive mergers between vor-
tex patches starting from the unstable initial density profile,
the observed density distribution exhibits turbulent character-
istics. While the energy is transferred downward, the enstro-
phy undergoes an upward transport starting from the injec-
tion wave number k;,;. In finer length scales with k=3k;p;,
the transfer rate of the enstrophy is observed to be constant,
and the energy spectrum shows a power-law scaling E(k)
o« k™% in a broad inertial range with « ranging from 5.2 to 3.5.
The discrepancy from the theoretically expected value of «
=3 is attributed to the inhibition of the cascade process re-
flecting the effect of the long persistence of high-vorticity
patches.
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